Photonuclear reactions triggered by lightning discharges in a Japanese winter thunderstorm

<u>Teruaki Enoto</u>, Yuki Wada, Yoshihiro Furuta, Kazuhiro Nakazawa, Takayuki Yuasa, Kazufumi Okuda, Kazuo Makishima, Mitsuteru Sato, Yousuke Sato, Toshio Nakano, Daigo Umemoto, Harufumi Tsuchiya, and GROWTH collaboration (*Kyoto Univeristy, The University of Tokyo, RIKEN, Nagoya University, Hokkaido University, and JAEA*)

Enoto et al., *Nature* <u>551</u>, 481 (2017)

Winter thunderstorm and lightning in Japan

low altitude (<1 km), powerful lightning, frequent positive discharge Ideal for observing the high-energy atmospheric phenomena

Time (JST)

Radiation detectors for mapping observations

A new stand-alone, low cost, and high-performance data acquisition (DAQ) system was developed; e.g., FPGA board of 4 channel 50 MHz, 12 bit ADC

- Gamma-rays detected with BGO scintillators
- Recorded with energy and GPS time tag
- Environmental sensors (temperature, pressure, etc)
- Mobile data transfer & remote control
- Deployed at local high schools, universities
- Supported by academic crowdfunding, and aiming at distributing to citizen scientists

Wada, Master thesis of the University of Tokyo, "Construction of the multi-point observation network for thundercloud gamma-rays" (ref) FPGA/ADC board specification http://ytkyk.info/blog/2016/09/04/growth-fpga-adc-board/ (C) T. Yuasa

Radiation detectors for mapping observations

Wada, Master thesis of the University of Tokyo, "Construction of the multi-point observation network for thundercloud gamma-rays" (ref) FPGA/ADC board specification http://ytkyk.info/blog/2016/09/04/growth-fpga-adc-board/ (C) T. Yuasa

- 1. Intensive initial spike (<~a few milliseconds, exceeds 10 MeV)
- 2. Gamma-ray afterglow (<~100 ms, <10 MeV)
- 3. **Delayed annihilation gamma rays** (~minute, at 0.511 MeV)

- 1. Intensive initial spike (<~a few milliseconds, exceeds 10 MeV)
- 2. Gamma-ray afterglow (<~100 ms, <10 MeV)
- 3. **Delayed annihilation gamma rays** (~minute, at 0.511 MeV)

Photonuclear reactions triggered by lightning

fast neutron

positron

Gamma rays from neutron and positrons

- 1. Intensive initial spike (<~a few milliseconds, exceeds 10 MeV)
- 2. Gamma-ray afterglow (<~100 ms, <10 MeV)
- 3. Delayed annihilation gamma rays (~minute, at 0.511 MeV)

Neutrons make the gamma-ray afterglow

 Exponential decay constant of the sub-second afterglow is consistent with the theoretical prediction ~56 ms of the neutron thermalisation.

Neutrons make the gamma-ray afterglow

• Exponential decay constant of the sub-second afterglow is consistent with the theoretical prediction ~56 ms of the neutron thermalisation.

Neutrons make the gamma-ray afterglow

- Exponential decay constant of the sub-second afterglow is consistent with the theoretical prediction ~56 ms of the neutron thermalisation.
- Spectrum with a sharp cutoff at 10 MeV is well explained by prompt gamma rays from atmospheric nitrogens and surrounding materials.

- 1. Intensive initial spike (<~a few milliseconds, exceeds 10 MeV)
- 2. Gamma-ray afterglow (<~100 ms, <10 MeV)
- 3. Delayed annihilation gamma rays (~minute, at 0.511 MeV)

Positron annihilation signal at 0.511 MeV

- The ~35 sec delay is consistent with the cloud moving from the lightning.
- The duration ~13 sec (1 σ) x wind speed ~17 m/s \rightarrow emission size ~200 m

- Relative intensity of the 0.511 MeV emission line and continuum below it gives a distance to the base of the positron-emitting cloud: ~80 m
- A lightning-triggered photonuclear event produces 4x10¹² neutrons.

Discussion

Estimated number of neutron 4x10¹² produced by photonuclear reaction is within predicted range of 10¹¹⁻¹⁵ (Babich+10, Carlson+14).

- Atmospheric oxygen also contributes to the lightning photonuclear reactions.
- Can explain past reports of 0.511 MeV (Umemoto+2016) and neutrons (Bowers+2017).
- Lightning produces atmospheric ¹³N, ¹⁵N, ¹⁵C, and ¹⁴C isotopes.

Summary

- GROWTH project has been observing high-energy atmospheric phenomena in the Japanese winter thunderstorm and lighting since 2006. We are also aiming at expanding to citizen science.
- We provided unequivocal evidence for the lightning-triggered photonuclear reactions of atmospheric nitrogen ¹⁴N+γ→¹³N+n;
 (1) downward terrestrial gamma-ray flash, (2) gamma-ray afterglow of thermalised neutrons, and (3) annihilation gamma-ray signal at 0.511 MeV from the beta-plus decay of ¹³N.
- Lightning provides channels to generate carbon isotopes.

Enoto, Wada, Furuta et al., *Nature* <u>551</u>, 481 (2017)

Selected as one of the Top 10 Physics Breakthroughs of 2017 by Physics World magazine, IOP Publishing Ltd

