Multi-point radiation measurements for gamma-rays from accelerated electrons in winter thunderstorm

雷雲ガンマ線の多地点観測プロジェクトが拓く新展開

Teruaki Enoto (#1), Yuuki Wada, Yoshihiro Furuta, Takayuki Yuasa, Kazuhiro Nakazawa, Toshio Nakano, Harufumi Tscuhiya, Masashi Kamogawa, Daisuke Yonetoku, Tatsuya Sawano and on behalf of the GROWTH collaboration #1: Department of Astronomy and Hakubi Center, Kyoto University

see also talk by Wada @MIS18-05, 5/22 (today) 11:45 AM-12:00 PM JpGU-AGU Joint session M-IS05 (Thunderstorm and Lightning) @ Chiba, Japan, 2017/05/22 (15 min) http://pcwallart.com/image-post/183236-thunderstorm-wallpaper-1.jpg.html

Electron Acceleration in Electric Fields

- Electron acceleration is usually difficult under dense atmosphere (short range of electrons).
- High energy radiation measurements from
 - thunderstorms (MacCarthy et al., 1985; Eack et al., 1996)
 - natural lightnings (Moore et al., 2001)
 - rocket-triggered lightnings (Dwyer et al, 2003)
 - Terrestrial Gamma-ray Flashes (TGFs) in a low-Earth orbit from satellites (Fishman et al, 1998; Smith et al., 2004)
- Relativistic acceleration of electrons by electric fields both in thunderstorms and lightnings?
- Prolonged high energy radiation enhancements detected for a few minutes from Japanese winter thunderstorms (Yamasaki et al., 1998; Torii et al., 2002)

Question: Radiation mechanism, event rate, and atmospheric condition?

 Gamma-Ray Observation of Winter Thundercloud (GROWTH) project since 2006 (Tsuchiya, Enoto et al., 2007 PRL, 2009 PRL, 2011 JGRD, and 2013 PRL).

Winter Thunderstorms along the Japan Sea

Periodic wind from the northeast, originating from the Siberian cold front, provide a rare environment for thunderstorm swith high energy phenomena.

Unique properties of Japanese winter thunderstorm:

- low altitude (sometimes <1 km),
- powerful (x10¹⁻³) and frequent lightnings,
- higher rate of positive discharges (~33%),
- and sprite & elves above the sea.

Under strong thunderstorms, we have been detected >20 gamma-ray events for 10 years at Kashiwasaki.

• 10 MeV gamma-ray range is several hundred meter on ground (a several dozen m of 10 MeV electron).

Observation Sites of the GROWTH Project

We started a new multi-point mapping observation since 2015 to increase the sample of the high energy events and to trace moving thunderstorms.

Our winter observations have been supported by Kashiwazaki-Kariwa power station & TEPCO, Inc., Kanazawa University, Kanazawa University Senior High School, Izumigaoka High School, Ishikawa Komatsu High School, and Science Hills Komatsu

Low-cost DAQ System Controlled by RaspPi

We newly develop a "stand-alone" & "low cost" data acquisition system (DAQ) with two electronics boards (Front-end & ADC) controlled by Raspberry Pi3.

- Gamma-rays detected with BGO scintillators
- Each photons recorded with energy and time
- GPS time tag, and on-board display of DAQ
- Environmental sensors (temperature, pressure, etc)
- Mobile data transfer & remote control
- Real-time monitoring of the website

(ref) FPGA/ADC board specification (50 MHz x 12 bit, 4 ch ADC) http://ytkyk.info/blog/2016/09/04/growth-fpga-adc-board/ (C) T. Yuasa

Wada, Master thesis of the University of Tokyo, "Construction of the multi-point observation network for thundercloud gamma-rays" See the talk by Wada @ MIS18-05 at this JpGU, 5/22 (today) 11:45 AM - 12:00 PM for details

Low-cost DAQ System Controlled by RaspPi

Wada, Master thesis of the University of Tokyo, "Construction of the multi-point observation network for thundercloud gamma-rays" See the talk by Wada @ MIS18-05 at this JpGU, 5/22 (today) 11:45 AM - 12:00 PM for details

Academic Crowdfunding

At the initial phase of our project, citizen supporters financially helped us through the academic crowdfunding. The donation gathered during the two month was ~\$16k from 153 contributors. This has been used for prototype manufactures and preparing for power-plugs on the high school roofs. Thank you for your support :)

Since 2015, our project has been supported by the crowd funding "academist", Grants-in-Aid for Young Scientists (A) Kakenhi 16H06006, the SPIRITS program of Kyoto University, and the joint research program of the ICRR, University of Tokyo.

Gamma-rays Detected from Thunderstorms

Example: Prolonged (~2 min) gamma-rays detected on 2016 December 8, ~3:00 (JST) at Science Hills Komatsu as a dense cloud passing the above.

Gamma-rays from winter thunderstorms extend up to at least ~10 MeV.

- Prolonged duration (~2 minute) is consistent with the speed of a moving cloud.
- Also detected at another point with a time lag \rightarrow Quasi-static electron acceleration
- Cutoff power-law spectrum \rightarrow Consistent with the electron Bremsstrahlung emission

Talk by Wada @MIS18-05, 5/22 (today) 11:45 AM-12:00 PM

Thunderstorms as a Natural Accelerator

- Cosmic rays knock out high energy seed electrons (e.g., >100 keV).
- 2. Strong electric fields generate the relativistic runaway electron avalanche (RREA).
- 3. Runaway electrons emit bremsstrahlung gammarays when interacted with the atmosphere.
- 4. Accelerated electrons generate an ionised path of discharge (stepped leader)?
- 5. As the leader reaches the ground, a huge current run the path (return stroke).

Tsuchiya, Enoto, et al., PRL 2007, 2009 榎戸, 修論「雷雲電場による粒子加速の観測的研究」東大 (2007) **榎戸&土屋「雷雲は天然の粒子加速器か?」天文月報 (2008)**

Relativistic Runaway Electron Avalanche

Gamma-rays Associated with Lightnings

Spiky radiations (<0.1 s) detected coincidence with lightning discharges. (Example) 2017 February 6, 17:34 JST at the Kashiwasaki site

- Similar spiky event was previously detected on 2012 January 13 (Umemoto et al., 2016)
 - A positron-electron annihilation line at 511 keV was detected during the mysterious 2012 event.

We have detected 12 radiation events (including two short spiky events) in FY2016, already amounting to 32% of the total events since 2006.

Future Plan of Our GROWTH Collaboration

Our group is building a new multi-point observation network along the Japan sea based on radiation measurement techniques of the X-ray astronomy.

Observation will be compared with numerical simulation of thunderstorms

- Yousuke Sato (RIKEN/AICS→Nagoya Univ.) has implemented lightnings to meteorological simulation library SCALE (Scalable Computing for Advanced Library and Environment) for thunderstorms.
- We also developed Geant4 Monte Carlo simulation of gamma-ray propagation in the atmosphere (lead by Y. Furuta).
- The number of observation site will increase in FY2017 (at least additional 3).
- Electric field monitoring will be added via our interdisciplinary collaboration.

We will tackle to resolve the condition of the electron acceleration in Japanese winter thunderstorms.

Summary

- Strong and low-altitude winter thunderstorms along the Japan sea provide a unique opportunity to directly detect Bremsstrahlung gamma-rays from relativistic electrons accelerated in electric fields.
- We developed a new portable, stand-alone, and low-cost gamma-ray detector and installed 10 observation points in 4 areas along the Japan Sea to trace moving thunderstorms.
- We successfully detected 12 radiation during FY2016 winter including 10 prolonged gamma-ray events from thunderstorms and 2 short spiky events associated with lightning discharges.

see also talk by Wada @MIS18-05, 5/22 (today) 11:45 AM-12:00 PM

We are planning a workshop in Japan for the highenergy atmospheric physics (support by ICRR). We welcome domestic and international collaborations for winter thunderstorm observations.

