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Background

- Radiation enhancement associated with thunderstorms -

7. EEI

| Terrestrial Gamma-ray Flashes (TGFs) |
'Ref: Dwyer et al., SSR (2012)
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Energy loss (MeV/m)

Background

- How runaway electrons are produced in air? -

Gurevich et al.,PLA 165(1992), Dwyer GRL (2003)

1Ep (~30 MV/m)

] All electrons become runaway
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Thus, the runaway electron avalanche occurs if
(1) Electric filed is higher than E.(MV/m) = 0.28 P(atm)

(2) Seed electrons with high energies are present

in the atmosphere
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Background

- Radiation enhancement in winter season -

| Observations of radiation enhancements only in winter seasons at the £
|coastal area of Japan Sea (Torii+2002,2008, Tsuchiya+2007,2011) |

Two types of radiation bursts on the ground
v<Long bursts v Short bursts
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Aim of observations

' 2>How electrons are accelerated to relativistic energies |
{ in a dense terrestrial atmosphere? :

f 2How those bursts are associated with lightning/
i thunderclouds ?

,f zHow positrons and neutrons are produced in
i lightning and thunderclouds®




GROWTH experiment (-fy2014)

Gamma Ray Observation of Winter Thunderclouds
QObservatlonS at Kashlwazakl Kariwa power plant (PRL2007,2013;JGR 2011)

5 GROWTH det. | [ Start in 2006
Monltorlng post

[MNal, Csl, BGO scintillation detectors and
Monitoring posts

[ Low altitude of cloud base : < 1 km




GROWTH experiment (fy2015-)

Gamma Ray Observation of Winter Thunderclouds

[ Kanazawa, Komatsu, Suzu (AS of 2018)(Wada, Master thesis 2017)
[MNal, Csl, BGO scintillation detectors + Raspberry Pi for downsizing system
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Observational results

(1) General properties of
long bursts



Counts histories of long bursts

Kashiwazaki+Mt. Noikrura
Duration : a few tens of sec to a few minutes
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Energy spectrum
Long bursts vs TGFs
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Not corrected for detector response
RHESSI: 289 events(Dwyer&Smith,GRL 2005)

AGILE: 130 events (Tavani et al., PRL 2011)

GROWTH : 5 events Revised Tsuchiya et al., JGR 2011

& Maximum energy
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© # of >1 MeV electrons
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GROWTH~109 - 101"
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Discussions

M Long bursts have been observed by airborne detectors, high-mountain ones as
well as ground-based ones. They have never been observed by detectors onboard
satellites (because primarily of moving of satellites)

™ It has been thought that long bursts are related to electrification of thunderclouds.
We may observe them from the electrification region when it being “ON”.

Electrification cease
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BremS'_::e?"..-"'ga:_l"vlma rays

Moving '
Yoy ¥

M detector M detector M detector 11



Discussions

M In order to observe the whole cycle of a long burst, we need to prepare mapping
observations such as the GROWTH one. Also air-shower experiments using many
detectors would be suitable for those observations. Actually, several air-shower
experiments have reported thunderstorms-related enhancements
[ Tibet ASg group (Amenomori+, Proc.of ICRC2013), TA group (Abbasi+ PLA, 2017)]

M Some groups have reported increases or decreases of muon flux during
thunderstorms (Alexeenko+2002, Dorman+2003, Muraki+2004).
So far, those muon variations have been observed only at high mountains.
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Observational results

(2) Relationship between
long bursts and lightning



Relation between a long burst and lightning

Termination of long bursts just prior to lightning
Y. Wada, G. S. Bowers, T. Enoto et al, GRL 45 5700 (2018)

e Simultaneous observations of gamma rays(GROWTH and GODAT), electric field

(Kamogawa team) and LF (Morimoto team) were done
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Relation between a long burst and lightning

Termination of long bursts just prior to lightning

LF network detected leader development of an IC*
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Relation between a long burst and lightning

Termination of long bursts just prior to lightning

Schematic view of this event
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Observational results
(3) Photonuclear reactions in
lightning

T. Enoto, Y. Wada, Y. Furuta, K. Nakazawa, T. Yuasa,
K. Okuda, K. Makishima, M. Sato, Y. Sato, T. Nakano,
D. Umemoto, H. Tsuchiya, Nature 551 (481) 2017



Lightning and neutron production

£1970’s-1990’s : nuclear fusion D + D ->(2.45 MeV) + 3He
& Possibility of neutron production in lightning Libby & Lukens JGR (1973)
€“Positive” detections  Shah+ Nature(1985), Shyam&Kaushik JGR (1999)

However,

DD Fusion : Not feasible in normal lightning environment

Extremely intense electric field would be required for detectable
neutron flux (101°0-1015 n) Babich+ JGR (2007)

w2000’s : Photonuclear reaction: y (>10.5 MeV) + 14N — n + 13N
& Clear detections of >10 MeV gamma rays from lightning

& Much more feasible than fusion : Babich+ JGR (2007), Carlson+ JGR (2010)



Short burst associated with lightning

on February 6, 2017, 17:34:06, at Kashiwazaki station Enoto+ Nature 2017

2. Gamma-ray afterglow (<~100 ms, <10 MeV)
3. Delayed annihilation gamma rays (~minute, at 0.511 MeV)

80
70
60
50
40
30

B Detectors
@ Monitoring stations

2.Gamma-ray afterglow
detector C (>1.2 MeV)

100 ms

Relative enhancement

Counts (10 ms)-
Lightning

':HIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

rhrl—l-urH-h.““j... |

..., -100 0 100 200,.....300.---- 400

3. Annihilation gamma rays

detector A (0.35-0.60 MeV)

Counts s-1
N
o

0. . . . 1 . R . . 1 . R . . 1 . R . . 1 .
0 50 100 Time (sec)




®

light curves and energy spectra

Counts per 10-ms bin
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e Exponential decay constant of the sub-second afterglow is
~56 ms of the neutron thermalization time.

e Spectrum with a sharp cutoff at 10 MeV
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Photonuclear reactions triggered by lightning

downward TGF |........ : R
(initial spike) half-life 10 min .

: atmospheric radioactive O carbon

nitrogen isotope isotope

14N 13N 13C
® O
fast neutron : i positron

photonuclear reaction - *{ beta-plus decay |-

Y+ 1N — 13N +n 13N = 3C +et+vVv

(p 2 n+et+v)

®
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Gamma rays from neutrons and positrons
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Neutrons make the gamma-ray afterglow
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e Exponential decay constant of the sub-second afterglow is consistent
with the theoretical prediction ~56 ms of the neutron thermalization time.



Neutrons make the gamma-ray afterglow
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e Exponential decay constant of the sub-second afterglow is consistent
with the theoretical prediction ~56 ms of the neutron thermalisation.

e Spectrum with a sharp cutoff at 10 MeV is well explained by prompt
3amma rays from atmospheric nitrogens and surrounding materials.

(MO,




Short-duration burst associated with lightning

1. Intensive initial spike (<~a few milliseconds, exceeds 10 MeV)
2. Gamma-ray afterglow (<~100 ms, <10 MeV)
3. Delayed annihilation gamma rays (~minute, at 0.511 MeV)
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Discussions

MWe have confirmed that photonuclear reactions occur in a lightning discharge.
It is noted that Bowers et al., (GRL, 2017) also detected photonuclear neutron
signals at the same coastal area of Japan sea.

[ Time structure of this event is consistent with that proposed by
Rutjes et al. (GRL,2017).
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Discussions

M This observation showed that radioactive isotopes such as 3N and 150
were produced.

[M14C would be also produced via 4N(n, p)'4C. This means that lighting may be an
additional source of 14C in the atmosphere as reported by Libby & Lukens (JGR,1973)
and Babich (GRL, 2017).

Cross sections of 4N (JENDL 4, Shibata et al., 2009)
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Discussions

Moderation
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Summary

M The GROWTH experiment has so far observed two types of bursts;
Long burst & Short burst

™ Long burst :
Bremsstrahlung gamma rays emitted from electrons accelerated in thunderclouds
(occasionally) annihilation gamma rays, muons

™ Short burst :
Bremsstrahlung gamma rays emitted from electrons accelerated in lightning
(occasionally) prompt gamma rays emitted from a de-excitation nucleus

4 Photonuclear reactions are triggered by lightning
neutrons, positrons and radioactive isotopes (13N, 150, 14C)



